
An Integration Approach for XML Query Parallelization
on Multi-thread Systems

RONGXIN CHEN1, ZONGYUE WANG1, HUSHENG LIAO2
1Computer Engineering College, 2College of Computer Science

1Jimei University, 2Beijing University of Technology
1No.185 Yinjiang Rd. Jimei District, Xiamen, 2No.100 Ping Le Yuan, Chaoyang District, Beijing

CHINA
1ch2002star@163.com, wangzongyue1979@163.com, 2liaohs@bjut.edu.cn

Abstract: - The key function parts of an XML query system include XML parsing, XPath and XQuery
evaluation. Each part has its specific parallel opportunity and approach. And the efficiency of each part directly
affects the overall effect of XML query parallelization. Therefore it is necessary to coordinate each part in a
real query application to achieve the best overall parallel performance. In this paper, we propose a novel
integration approach for parallelizing XML query. Our integration approach is based on the workflow of
XQuery parallelization, where both parallel XML parsing and parallel XPath evaluation are seamlessly
integrated. The approach can realize automatic parallelization of XML query and make full use of multi-thread
computing resources for parallel processing. Experimental results indicate that our approach can effectively
improve the overall performance of XML query application through parallel computing on multi-thread
systems.

Key-Words: - XML query, XML parsing, XPath, XQuery, Parallelization, Multi-thread system, Integration
approach

1 Introduction
With the development and popularization of Web
technology, XML is used extensively as the
information exchange and storage standard. XML
query processing is the main approach of utilizing
XML data. To deal with the rapid growth of XML
data and the query requirements, various
optimization measures [1] are widely studied to
improve the performance of XML query. Recently,
the popularity of multi-core environment provides a
nice opportunity for parallel computing, and
optimization based on multi-thread parallel
computing becomes an important way to improve
the performance of software [2]. Therefore, how to
make full use of multi-thread resources to improve
the performance of XML query becomes an
important research topic.

Generally an XML query system is based on
XQuery [3], and includes some key function parts
such as XPath [4] evaluation and XML parsing.
XML parsing is necessary in XML applications
because XML data are in document form. The
parsing of big dataset is time-consuming work,
which is liable to be the bottleneck of performance.
Therefore parallel processing has significance for
improvement of query on multi-thread systems. We
have proposed a method called ParaParse [5] to deal

with parallel XML parsing. XPath is used to access
XML dataset. Navigate style of XPath evaluation
can easily fulfill various semantics of XPath, thus it
is widely used in implementation of query engines.
However, its disadvantage is the relatively low
performance comparing with twig [6] style
evaluation. We have proposed pM2 [7] to improve
the performance of navigate XPath evaluation by
parallel processing. Since XQuery, which is a
mainstream XML query language, is the core part of
the XML query, its performance greatly affects the
overall performance of XML applications.
Therefore it is critical to parallelize XQuery.
XQuery is a functional language which has some
advantages in parallel processing [8]. However, the
parallel opportunity is hidden in various nested
expressions, it is difficult to parallelize XQuery
directly. In our previous work [9], we proposed a
novel automatic parallelization method for XQuery
based on functional intermediate language. Since an
XML query system consists of the key parts
including XML parsing, XPath and XQuery
evaluation. An approach which coordinates the
parallelization of each part is necessary to achieve
the best overall parallel performance. Unfortunately,
no complete integration solution for XML query

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 719 Volume 14, 2015

parallelization on multi-thread systems is available
yet.

In order to automatically parallelize the main
function parts of XML query and take full
advantage of multi-thread resources to improve the
overall performance of the XML application, in this
paper, we propose an integration approach for
parallelizing XML query based on our earlier works.
Our approach takes the workflow of XQuery
parallelization as the basis for integration. Then both
parallel XML parsing and parallel XPath evaluation
are seamlessly integrated. We implement our
approach in XML query engine and carry out the
experimental evaluation.

The rest of the paper is organized as follows:
Section 2 presents a brief review of the related
work. Section 3 describes the whole integration
workflow. Section 4 describes the basis of
integration – XQuery parallelization. Section 5 and
6 describes the integration of parallel XML parsing
and parallel XPath evaluation respectively. Section
7 provides case study and the experiments. Section
8 gives the conclusion.

2 Related work
XML query parallel processing includes many
parallelization aspects, while XQuery parallelization
is the basis. To extend the distributed or parallel
ability to ordinary XQuery is an important approach
to improve query efficiency by making use of
distributed cluster. XQueryD [10] is a lightweight
extension to XQuery that allows expressing queries
over distributed data sources and supports efficient
query shipping. DXQ [11] is another extension of
XQuery to support distributed XML query by
invoking remote programs and dynamically ship
query code to execute at remote servers. Recently,
MapReduce processing model becomes a popular
parallel framework and widely applied in various
distributed environments. A query description
language named ChuQL [12] is developed by
extending XQuery to support XML parallel
processing through MapReduce model. The studies
mentioned above provide describing methods and
runtime support for distributed or parallel
processing of XQuery; however they generally need
extending the XQuery language. Moreover, the
automatic parallelization issue is not fully discussed
especially for multi-thread computing. Li [13]
presented a parallelization solution to XQuery
through automatic rewriting. However, the study is
limited in several specific expression structures and
not for the full-fledged XQuery. Miao et al. [14]
proposed a query plan decomposition strategy
combining data partition technique for parallel

XQuery processing. And yet a general
parallelization solution to nested FLWOR structures
which frequently appear in XQuery is not given. In
our earlier work [9], we proposed an automatic
parallelization method for XQuery programs based
on functional intermediate language. In this method,
parallel primitives are arranged in the query plan to
perform parallel processing. It provides a basis for
integration of XML query parallelization.

As for parallel XML parsing and parallel XPath
evaluation, both of them are key parts in parallel
XML query, a lot of related work have been done in
these areas. Typical work in parallelization of XML
parsing includes [5][15]; while typical work in
parallelization of XPath evaluation includes
[6][7][16]. From the perspective of parallelization
for a whole XML query system, the work can only
be regarded as a partial work. Effective co-
ordination of all parallel parts in XML query system
is critical to achieve the best parallel effect. In our
previous work [17], we presented an integration
parallel solution for XML query application. In the
solution, parallel XML parsing and parallel XPath
evaluation are combined to improve the
performance of XML query application under multi-
thread condition. However, the integration solution
does not involve the problem of XQuery
parallelization.

3 Integration workflow
The automatic parallelization for XQuery is the
basis for the integration. Both parallel XML parsing
and parallel XPath evaluation are integrated into
parallel XQuery process through proper rewriting.
Workflow of whole parallelization procedure
consists of three major processing stages as
illustrated in Fig. 1.

(1) Stage I is pre-processing of parallelization.
The primary work in this stage is to translate
XQuery into FXQL (Functional XML Query
Language) [18], which is a functional intermediate
language developed by our work group. In the
translating procedure, firstly XQuery source code is
translated into XQuery Core [19] code through
normalization. Then XQuery Core code is further
translated into FXQL code.

(2) Stage II is processing of parallelization.
Through dependence analysis and cost estimation,
FXQL code is rewritten to pFXQL code and parallel
query plan is generated. In the rewriting procedure,
XPath relative expressions is rewritten to parallel
pM2 primitives, and the XML parsing expression is
rewritten to parallel XML parsing primitive.

(3) Stage III is executing of parallel query plan.
In essence, the execution of the parallel query plan

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 720 Volume 14, 2015

is the invoking of primitives contained by the plan.
Primitives include various parallel primitives, as
well as a variety of non-parallel primitives. The
parallel execution of XPath is realized by invoking
parallel pM2 primitives. Similarly XML parsing is
executed in parallel by invoking parallel XML
parsing primitive which is encapsulated with the
implementation of ParaParse method. Relation
matrix of XML node is required for the execution of

pM2 primitives. Obviously the construction of the
matrix only needs once for the same XML dataset,
and it will be performed after XML parsing.

Since the whole workflow is designed as an
automatic processing procedure to support implicit
parallelism, application developers only need to
write a regular XQuery program, which will be
automatically processed in parallel by XML query
engine.

ParaParse XML
parsing

Parallel XPath
evaluation

Parallel matrix
constructionXML tree

Query result

pFXQL code

Execution

Relation matrix

Lexical analysis/
Parsing

pFXQL rewritting

Cost estimation

Normalize Static type check FXQL translate

Input

XQuery tree Xquery Core
XQuery code

Xquery Core

(Type info.)

(Cost info.)

FXQL code

Parallel plan
(pFXQL code)

FXQL code

XML data

Dependence analysis

Output

II

III

I

Other parallel
primitives

Non-parallel
primitives

Fig.1: Workflow of integration approach for parallelizing XML query

4 XQuery parallelization
An XQuery program usually contains multiple
FLWOR expressions which may be nested. The
nested programming style can facilitate describing
various flexible query requirements. However, it
makes the program structure too complex and
difficult to be parallelized. Rewriting becomes an
important way for XQuery parallelization. In our
earlier work [9], we proposed an automatic method
to solve parallelization of XQuery based on
functional intermediate language. The basic idea is
to design a functional language called FXQL, which
is well complied with XQuery, to describe query
plans. Furthermore, a functional language called
pFXQL, which has parallel semantics, is developed
to describe parallel query plans. Task scheduling is
carried out by invoking parallel primitives in
pFXQL. The design and rewriting of functional
intermediate language play the key role in XQuery
parallelization; they also provide the basis for
integration of XML query parallelization.

4.1 Functional intermediate language
FXQL is a functional intermediate language which
is complied with XQuery. It is designed to describe

query plans. Syntax of FXQL is listed in Table 1,
where e is a FXQL expression, v is a variable, f is a
function and c is a const. In expression (3), v=e is
variable binding, indicating that the definition of v is
expression e. v=f is function binding, indicating that
the definition of f is expression e. Expression (4)
describes function call where f is primitives standing
for built-in functions or user-defined functions.
When f is COND, it indicates a condition operation;
and f = MAP indicates an iterative operation.

Table 1: Syntax of FXQL
Expression Name Expression Syntax
(1) Const e ::= c
(2) Variable
/function e ::= v | f

(3) Expression with
bindings

e ::= e where (v = e | f = e)(v
= e)*(f = e)*

(4) Function call e ::= f(e*)

There are two kinds of primitives in FXQL: one
is iterative primitive, and the other is ordinary
primitive. The prototype of iterative primitive is
MAP (D,F,op), op∈{foreach, foreachat, filter,
filterat}. It means there is an op-type iterative
operation on function F according to the size of data

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 721 Volume 14, 2015

sequence which is the evaluating result of
expression D. The MAP primitive comes from FOR
clause in FLWOR expression and various axis
operations. Its role is to control the iterative number
of evaluation. While the role of ordinary primitives
is to perform various computing.

pFXQL language is the extension of FXQL with
parallel semantics to describe parallel query plans.
The main syntax structures in pFXQL are the same
as in FXQL, while the difference between them is
the using of parallel primitives in pFXQL. In the
semantic domain of pFXQL, thread information is
added to the evaluation environment. The prototype
of semantic function is defined as
... : Exp Env DV→ → , where Exp is an FXQL

expression, Env is the evaluating context and DV is
the denotational value. Here DV=Val + Def, Val is a
variable value and Def is a function definition.
Instances of context are denoted as

, ', '' Env v Val f Def t Threadρ ρ ρ ∈ = + + , where
Thread is available working thread. The evaluating
context is expanded by the binding of variables,
functions or threads during evaluation. ∪ denotes
the expanding operator. Parallel primitives appear
only in function call expression in pFXQL as shown
in the following semantic equation.

'' ' ' (1)

' (1)

'

(*)
((*) (1, 2,))

() (, 2 ,)

: (1)
(, 2 ,)

((*) (1, 2))
2

t getThread

t getThread

t getThr

f e
if f e PMAP e e op then

foreach p in ps r r map p e op
where xs ps partition e

r map xs e op
else if f e PIPE e e then

e

ρ

ρ ρ

ρ

ρ ρ

ρ ρ

= ∪

= ∪

= ∪

=
= ⊕

=

=

=

 (1) ((1)| (1))

' (1)

((*) ())

(
)) (*)

((*) (1, 2, 3))
1 2 3

ead v getone e getsome e

t getThread

else if f e PARA e then
e

else if f prim f PMAP f PIPE f PARA f
COND then f e

else if f e COND e e e then
if e then e else e

el

ρ ρ

ρ ρ

ρ

ρ ρ ρ

∪

= ∪

=

∈ ∧ ≠ ∧ ≠ ∧ ≠ ∧ ≠

=

((*)se body f e ρ

In above equation, PMAP is the primitive for

data parallelism, PIPE is for pipeline parallelism
and PARA is for task parallelism. The fourth line
from the bottom is corresponding to invoke other
primitives including some parallelized specialized
primitives. The auxiliary function map is used to
carry out iterative operation according to operation
type op, the function partition is to divide data
sequence, the function getone is to fetch an element
from sequence and getsome is to fetch data block for

pipeline processing, the function getThread(1) is
used to get one worker thread from thread pool, and
the function body is to get the body of self-defined
functions.

4.2 From XQuery to pFXQL
XQuery provides sophisticated syntax and complete
language framework to support developing various
powerful XML query programs. To simplify the
process of XQuery program during automatic
parallelization, we use a subset of the XQuery Core
[19] which is normalized to eliminate some
syntactic sugar. The main syntax of XQuery Core
processed in this paper as follows.

e::= c | v | for v (at v)? in e return e
 | let v:=e return e | if (e) then e else e
 | (some|every) in e satisfiers e
 | e (and|or|+|-|*|idiv|=|<|<<|…) e
 | e,e | e/e | e[e] | f(e*)
The translation function is defined as T[…]:

CExpr→Exp, where CExpr is XQuery Core
expression and Exp is FXQL expression. The main
translation rules are listed as follows.

(R1) T[c] = c
(R2) T[v] = v
(R3) T[for v in e1 where e2 return e3] = MAP (

MAP(T[e1],f1,filter), f2, foreach) where {f1(v) =
T[e2], f2(v') = T[e3]}

(R4) T[for v1 at v2 in e1 return e2] =
MAP(T[e1], f, foreachat) where {f(v1,v2) = T[e2]}

(R5) T[let v=e1 return e2] = T[e2] where{v =
T[e1]}

(R6) T[if e1 then e2 else e3] = COND(T[e1],
T[e2], T[e3])

(R7) T[(some|every) v in e1 satisfies e2] =
(QUANTIFIEDSOME|QUANTIFIEDEVERY)
(T[e1], f) where {f(v) = T[e2]}

(R8) T[e1 opt e2] = OPT(T[e1], T[e2])
(R9) T[e1,e2] = CONCATE(T[e1], T[e2])
(R10) T[e1/e2] = MAP(T[e1], f, foreach)

where{f(v)=AXIS(T[e2], v)}
(R11) T[e1[e2]] = MAP(T[e1], f, filter)

where{f(v)= CHILD_ONE(T[e2], v)}
(R12) T[f(e*)] = FUN((T[e])*)
It’s simple and direct to translate XQuery to

FXQL according to the translation rules. Fig.2
shows the translation of an XQuery program which
contains FLWOR structure. The XQuery code is
firstly translated to FXQL code, and then further
rewritten into pFXQL code. Fig.2(b) and Fig.2(c)
show the simplified codes. It can be found that the
parallel primitive PMAP is employed to perform
data parallelism in Fig.2(c).

let $a:=3 FLAT(SORTTUPLE(

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 722 Volume 14, 2015

 for $b in Dataset
 where $b>$a
 order by $b
return $b+10

(a) XQuery code

 MAP(MAP(Dataset, gq:Func3, filter)
 where { gq:Func3 (b@3) = QUANTIFIEDSOME(b@3, gq:Func2)
 where { gq:Func2 (v1@4) = QUANTIFIEDSOME(a@2, gq:Func1)
 where { gq:Func1 (v2@5) = GT(u1@6, u2@7) } } }, gq:Func0,
foreach)
 where { gq:Func0 (b@3) = PLUS_INTEGER(b@3 , 10)}
 where { a@2 = 3 }, "asc"))

(b) FXQL code
FLAT(SORTTUPLE(v111@112, "asc"))
 where {
 v111@111= PMAP(Dataset, gq:Func3, filter)
 where { gq:Func3 (b@3) = QUANTIFIEDSOME(b@3, gq:Func2)
 where { gq:Func2 (v1@4) = QUANTIFIEDSOME(a@2, gq:Func1)
 where { gq:Func1 (v2@5) = GT(u1@6, u2@7) }, a@2 = 3 } },
 v111@112= PMAP(v111@111, gq:Func0, foreach)
 where { gq:Func0 (v111@111) = PLUS_INTEGER(v111@111, 10)} }

(c) pFXQL code

Fig.2: Translate from XQuery to pFXQL

5 Integration of parallel XML parsing
In our earlier work [5], we proposed a parallel XML
parsing method called ParaParse based on sub-tree
construction. It utilizes a light weighted data
partition technique and supports parsing arbitrary
XML segments in parallel. And after that sub-trees
are merged to generate the complete XML tree.
During integrating process, the data model should
be kept consistent and parallel parsing primitive
should be implemented to adapt to pFXQL
description.

5.1 Data model
Generally an XML query engine contains various
function parts such as XML parsing, XPath
evaluation and XQuery query. We allow different
parts to use their specific data form for efficient
processing. While a unified data model should be
complied with in the process of integration. The
W3C has defined the XQuery and XPath Data
Model (XDM) [20], which defines all permissible
values of expressions in XQuery and XPath
languages. The value of every expression in the
language is closed in the data model. Value types in
XDM include sequence and item, while item
includes atomic value and node. Every instance of
the data model is a sequence, which is an ordered
collection of zero or more items. In XDM, a
sequence cannot be a member of a sequence, thus it
is flat. While in the data model of pFXQL, we
utilize generalized list to extend the original XDM.
Since generalized list can reserve the grouping and
layered information of intermediate results, more

flexible evaluation and optimization methods can be
applied. Value types in our data model are described
as follows,

List ::= () | (Item, …, Item)
Item ::= Atom | Node | List

Where List is a generalized list, Item may be an
atomic value, an XML node or a generalized list. In
order for XML query engines to be able to operate
on instances of the data model, a family of accessor
functions is defined. Some frequently used
accessors are listed below, where dm is the
namespace-prefix of data model.
(1) dm:children($n): Returns the children of the
node $n as a sequence containing zero or more
nodes;
(2) dm:attributes($n): Returns the attributes of the
node $n as a sequence containing zero or more
attribute nodes;
(3) dm:parent($n): Returns the parent of the node $n
as a sequence containing zero or one nodes;
(4) dm:node-name($n): Returns the name of the
node $n as a sequence of zero or one xs:QNames;
(5) dm:string-value($n): Returns the string value of
the node $n.

The above accessors are implemented to access
to the node information of XML data. Algorithm 1
describes the implementation of dm:children
accessor by using node information from the parsing
result of ParaParse. The function firstChild in line 2
is used to get the first child node of the current node.
The function nextSibling in line 5 is used to get the
next sibling node of the current node. All the
information can be directly retrieved from the
parsing result. The implementation of other
accessors is omitted due to space constraints.

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 723 Volume 14, 2015

Algorithm 1 Implementation of dm:children
Node[] GetChildren(Node nd)
Input: node nd
Output: node sequence
1: chs←∅ ; // Node[] chs
2: next←nd.firstChild; //Node next
3: while (next≠∅) do
4: chs←chs∪next;
5: next←next.nextSibling;
6: end while
7: return chs

5.2 Parallel XML parsing primitive
XML parsing is a relatively independent function
within XML query application, the prototype of
XML parsing primitive in the FXQL query plan is
described as DOC(XmlDoc), where XmlDoc is the
URL of XML dataset. While the prototype of
parallel XML parsing primitive in the pFXQL query
plan is described as PDOC(XmlDoc), which
corresponds to the parallel implementation of the
parsing method ParaParse.

The rewriting method is rather simple. At
rewriting stage, the serial XML parsing primitive
DOC in FXQL query is directly replaced by the
corresponding parallel one – PDOC. Then in
executing stage, XML parsing will automatically
execute in parallel with ParaParse method. Taking
into account the overhead of parallelization, the
parallel effect of parsing a small dataset may be
insignificant. Thus an applicable condition is preset
to decide whether to perform parallel parsing in
executing stage according to the volume of dataset.

6 Integration of parallel XPath
evaluation
We proposed a parallel evaluation method called
pM2 method [7] for navigate XPath evaluation in
our earlier work. The method has two main stages
includes parallel relation matrix construction and
parallel query. Node relation matrix of XML dataset
is firstly constructed according to XML parsing
results, and then parallel query is performed by
invoking parallelized query primitives. Iterative
processes in both matrix construction and query
primitives are implemented with data parallelism, so
that each stage can take advantage of multi-thread
resources. Since the parallel query in pM2 depends
on node relation matrix, construction of the matrix
should be carried out upon the first XPath
evaluation or right after XML parsing. In integrating
procedure, parallel pM2 primitives should be
designed to wrap the functions of pM2. Then XPath

expression is rewritten to a calling sequence of
parallel pM2 primitives in pFXQL query plan.

6.1 Parallel pM2 primitives
Parallel pM2 primitives are used to describe the
evaluating steps in XPath expression with pM2
method. They are used in form of pFXQL primitives
therefore the description of parallel XPath
evaluation can be seamlessly integrated into pFXQL
query plan. The semantic function of pM2 primitive
is defined as E[...]: Exp→Val, where Exp denotes
pM2 primitives, val denotes the evaluation result.
The implementation of several frequently used
primitives is described in semantic equations as
listed below.

(E1) E[GET_DESCENDANT(e2, e1)] =
list←GetDescendant(E[e1], e2.name,

true); //NodeCode[] list
result←GetNodeList(list);
return(result);

(E2) E[GET_CHILD(e2, e1)] =
list←GetChild(E[e1], e2.name, true)
result←GetNodeList(list);
return(result);

(E3) E[GET_FILTER(e2, e1)] =
list←FilterInput1byInput2(E[e1], E[e2

])
result←GetNodeList(list);
return(result);

The auxiliary functions appear in the right part of
equations are pM2 query primitives from article [7].
Equation E1 to E3 describes the evaluation of the
pM2 primitive GET_DESCENDANT, GET_CHILD
and GET_FILTER respectively. In equation E1,
query primitive GetDescendant is used to get the
descendants of the input node in parallel, and
function GetNodeList is utilized to get node
sequence which complied with the data model.
Evaluating result list in the equation is a node
sequence which contains XML encoding
information. Query primitive GetChild is used to get
the children of the input node in parallel in equation
E2, and query primitive FilterInput1byInput2 is
used to perform predicate evaluation in parallel in
equation E3.

6.2 XPath rewriting
In order to describe pM2 evaluation in pFXQL
query plan, the XPath primitive in FXQL query plan
needs to be rewritten to parallel pM2 primitives.
The prototype of XPath primitive is in form of MAP
function call as shown below.

MAP(e1, f, op)
where{f(v)= AXIS (e2, v)}

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 724 Volume 14, 2015

Where e1 is the input expression, and the binding
function f is corresponding to an axis operation.
AXIS∈ {DESCENDANT, CHILD,
FOLLOWING_SIBLING, … }, denotes various
types of axis operation. op∈{foreach, filter},
denotes different types of iterative operation. The
rewriting function is defined as T[...]: Expr→Expr,
where Expr is a pFXQL expression. Several
frequently used rewriting rules are listed as follows.

(R1) T[MAP(e1, f, foreach)
where{f(v)= DESCENDANT (e2, v)}] =
GET_ DESCENDANT (T[e2], T[e1])

(R2) T[MAP(e1, f, foreach)
where{f(v)=CHILD(e2, v)}] =
GET_CHILD(T[e2], T[e1])

(R3) T[MAP(e1, f, filter)
where{f(v)= CHILD(e2, v)}] =
GET_FILTER(T[e2], T[e1])

Rule R1, R2 and R3 are used to rewrite the
primitives for getting descendant nodes, for getting
node child nodes and for predicate evaluating
respectively. After the rewriting process in stage II
of the workflow, parallel XPath evaluation is
seamlessly integrated into pFXQL query plan.

7 Case study and experiments

7.1 Case study
Case 1 below is a typical XML query program
running on XMark benchmark [21]. It comes from
article [22] with some modification. There are
multiple nested FLWOR structures and several
XPath expressions in this case. In this section, we
use it to explore the parallelization for sophisticated
XML query.

The automatically generated parallel query plan,
which is described in pFXQL, is shown in Fig.3. To
save space, only partial expressions which contain
parallel primitives are shown. In the query plan,
there are total 15 extracted query blocks which are
in the form of variable binding expression. The
query block bound by the variable auction@1
contains the parallel XML parsing primitive PDOC.
The query blocks bound by the continuous variables
from v111@111 to v117@117, as well as the
variables v119@119 and v120@120, contain
parallel pM2 primitives. The variable v118@118
binds a query block which contains a PMAP
primitive. That means the block will be processed in
data parallelism. Each of the query blocks bound by
variable v122@122 and v123@123 contains a PIPE
primitive. The two blocks are arranged in sequence,
so that pipeline stages will be constructed to
perform pipeline parallelism.

Case 1. A typical XML query.
let $auction := doc('xmark.xml') return
let $euro:= for $o in $auction/site/open_auctions/open_auction
for $i in $auction/site/regions/europe/item/@id

where $o/itemref/@item eq $i
return $o
for $a in $euro

where ($a/ bidder[1]/increase)*2<= $a/bidder[last()]/increase
return for $p in $auction/site/people/person[profile/@income>5000]

for $w in $p/watches/watch
where $a/@id = $w/@open_auction

return <auction id="{$a/@id}">
<increase first="{$a/bidder[1]/increase/text()}"

last="{$a/bidder[last()]/increase/text()}"/>
<watched_by id="{$p/@id}"/>

</auction>

Hidden codes in line 11~49, 51~129, 131~279

and 280~506 contains some un-rewritten XPath
primitives. That means the query blocks which
contain such primitives can be processed in other
parallel way instead of using pM2. For instance, the

query block corresponding to line 11~49 can be
processed in data parallelism by using PMAP
primitives; the query blocks corresponding to line
131~279 and line 280~506 can be processed in
pipeline parallelism.

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 725 Volume 14, 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
49
50
51
52
53
54

129
130
131
132
133
202
279
280
281
282
506
507

[-]

[-]
[+]

[-]
[+]

[-]
[+]
[+]

[-]
[+]

FLAT(v123@123)
where
{ auction@1 = PDOC(“xmark.xml”),
 v111@111 = GET_CHILD(element(site), auction@1),
 v112@112 = GET_CHILD(element(regions), v111@111),
 v113@113 = GET_CHILD(element(europe), v112@112),
 v114@114 = GET_CHILD(element(item), v113@113),
 v115@115 = GET_CHILD(element(site), auction@1),
 v116@116 = GET_CHILD(element(open_auctions), v115@115),
 v117@117 = GET_CHILD(element(open_auction), v116@116),
 v118@118 = PMAP(v117@117, gq:Func10, foreach)
 where { gq:Func10 (o@43) =
 FLAT(
)},
 v119@119 = GET_CHILD(element(site), auction@1),
 v120@120 = GET_CHILD(element(regions), v119@119),
 v121@121 = MAP(v120@120, gq:Func19, foreach)
 where { gq:Func19 (fs:dot3@20) =
 FLAT(
)},
 euro@2=FLAT(v118@118),
 v122@122= PIPE(euro@2, gq:Func52, filter)
 where { gq:Func52 (a@3) =
 QUANTIFIEDSOME(
) where {
 }},
 v123@123= PIPE(v122@122, gq:Func39, foreach)
 where { gq:Func39 (a@3) =
 FLAT(
)},
}

Fig.3: The parallel query plan corresponding to Case 1

7.2 Experimental evaluation
To evaluate the parallelization effect of our
approach, we conduct experiments on a multi-core
laptop PC with 4Gb RAM. We implement our
approach in XQuery engine using Java. The running
environment is JRE 1.6 and Windows XP sp3. The
typical test cases, which are labeled as W1~W6 and
X1~X6 respectively, are selected from W3C
XQuery use cases [23] and XMark benchmark cases
[21]. The indexes for test cases are listed in Table 2.

Table 2: Index table for test cases

Case Case in [23] Case Case in [21]
W1 1.1.9.5 Q5
W2 1.1.9.10 Q10
W3 1.1.9.12 Q12
W4 1.4.4.3 Q3
W5 1.4.4.10 Q10
W6 1.4.4.11 Q11

X1 Q8
X2 Q9
X3 Q10
X4 Q11
X5 Q12
X6 Q20

The data volume in the original W3C test case is

relatively small, so that we generate large-sized
XML data sets for testing according to the original
data model. In W3C cases, case W1 and W2 are the

cases with single FLWOR structure and a single
data source, while case W3 and W6 contain multiple
nested FLWOR structures. Both W4 and W5
contain multiple data sources. Most of XMark cases
contain nested FLWOR structures and multiple long
XPath expressions. There is nested FLWOR
structure in the return clause of case X1, while there
are some complex node construction expressions in
the return clause of case X3.

7.2.1 Parallelization effect
We run the tests under four-thread condition and
compare the serial execution times with the parallel
execution times after automatic parallelization. The
comparison result is shown in Fig.4. It can be found
that the execution times of most cases are
significantly reduced by parallelization. The
speedup of case W1, W3, W4, X4 and X5 exceeds
3.0, XPath evaluation and XQuery query occupy a
high proportion of total workload in such cases.
While the speedup of case X6 is only 1.57, it can be
found XML parsing takes the bigger part of total
execution time. All the test cases contain FLWOR
structures, which may be in multi-layer nested style,

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 726 Volume 14, 2015

the average speedup of all the cases is 2.61 under
four-thread condition. Experimental results show
that our approach is suitable for processing the
parallelization of FLWOR structures which often
appear in an XML query.

0

5

10

15

20

25

30

35

W1 W2 W3 W4 W5 W6 X1 X2 X3 X4 X5 X6

Ex
ec

ua
tio

n
tim

e
(s

ec
)

Serial

Parallel

Fig.4: Comparison of execution time in serial and

parallel

7.2.2 Contribution rate
We utilize the contribution rate to measure the roles
of different function parts in XML query during
parallel evaluation. The contribution rate rfp refers to
the execution time saved in a certain function part fp
in the proportion of total time saved by
parallelization. The total saving execution time
through parallelization is described in formula (1),
where t denotes execution time, the superior s stands
for serial processing and p for parallel processing,
the subscripts all, xml, xpath, xquery stand for total
parts, XML parsing part, XPath evaluation part and
XQuery query part respectively. Formula (2)
presents the computing method for the contribution
rate of every function part.

() () ()s p s p s p s p
all all xml xml xpath xpath xquery xqueryt t t t t t t t− = − + − + −

 (1)
s p
xml xml

xml s p
all all

t tr
t t

−
=

−
,

s p
xpath xpath

xpath s p
all all

t t
r

t t
−

=
−

,

s p
xquery xquery

xquery s p
all all

t t
r

t t
−

=
−

 (2)

The contribution rates are calculated according to
execution times. Serial execution times come from
the test results of the query plans without any
parallelization. The parallel execution times of
XML parsing are obtained when parallel primitive
PDOC is used. The parallel execution times of
XPath evaluation are obtained when parallel pM2
primitives are utilized in query plans. As for
XQuery query, the parallel execution times are
obtained when parallel query primitives are

employed in query plans, which are the results of
automatic parallelization.

The contribution rates of all the test case are
shown in Fig.5. It can be found that in most cases
such as case W1 to X5, XQuery query takes up the
big part of the total contribution rate. While parallel
XML parsing brings the highest contribution rate in
case X6. The reason is that the workload of the
query part is small in this case, in contrast, XML
parsing accounted for a large proportion of total
execution time.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

W1 W2 W3 W4 W5 W6 X1 X2 X3 X4 X5 X6

XPath XQuery XML

Fig.5: Contribution rates in different cases

In order to further investigate the impact brought
by data volume, Case 1 in section 7.1 is selected for
testing with different volume of XML dataset. On
the 4-thread test platform, the contribution rates are
shown in Fig.6. This indicates that with the
increasing of XML data volume, the contribution
rates of parallel XML parsing gradually decreased,
while the contribution rate of parallel XQuery query
gradually increased, and contribution rates of
parallel XPath evaluation keep stable. The reason is
that the workload of parallel XQuery query
increases rapidly upon the increasing of data
volume, while the XPath evaluation has a relatively
small portion of the whole process.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1Mb 2Mb 5Mb 10Mb 20Mb

XPath XQuery XML

Fig.6: Contribution rates under different data size

condition

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 727 Volume 14, 2015

8 Conclusion
In the XML query system, the three main function
parts, which include XML parsing, XPath
evaluation and XQuery query, have corresponding
parallelizable opportunities and different
parallelization methods. The parallelization effect of
each part will contribute to the overall effect of
parallel XML query. In our approach, the
parallelization characteristic of each function part is
fully taken into account. XQuery parallelization is
chosen as the basis for integration and functional
intermediate language is utilized to describe the
query plan in a united form. Each function part is
integrated through rewriting to make full use of
multi-thread resource to improve the performance of
XML query. Moreover, the workflow of our
approach is an automatic parallelization procedure,
therefore implicit parallelism can be achieved to
improve ease of use of parallel XML query.

Acknowledgments
This research was supported by the National Natural
Science Foundation of China (No.41201462), the
Natural Science Foundation of Fujian Province of
China (No.2014J01245), the Education Department
of Fujian Province Fund for Outstanding Young
(No.JA13168) and the Science Foundation of Jimei
University (No.ZQ2014003).

References:
[1] X. Meng, Y. Wang, X. Wang, Research on

XML Query Optimization, Journal of
Software, Vol.17, No.10, 2006, pp.2069-2086.

[2] H. Sutter, The free lunch is over: A
fundamental turn toward concurrency in
software, in:
http://www.gotw.ca/publications/concurrency-
ddj.htm, 2005.

[3] S. Boag, D. Chamberlin, M.F. Fernández, D.
Florescu, J. Robie, J. Siméon, M. Stefanescu,
XQuery 1.0: An XML query language, in:
http://www.w3.org/TR/xquery/, 2007.

[4] A. Berglund, S. Boag, D. Chamberlin, M.F.
Fernandez, M. Kay, J. Robie, J. Siméon, XML
path language (XPath) 2.0, in:
http://www.w3.org/TR/xpath20/, 2007.

[5] R. Chen, H. Liao, ParaParse: A parallel method
for XML parsing, in: 2011 IEEE 3rd
International Conference on Communication
Software and Networks (ICCSN), IEEE, 2011,
pp. 81-85.

[6] I. Machdi, T. Amagasa, H. Kitagawa, Parallel
holistic twig joins on a multi-core system,

International Journal of Web Information
Systems, Vol.6, No.2, 2010, pp.149-177.

[7] R. Chen, H. Liao, Z. Wang, Parallel XPath
Evaluation Based on Node Relation Matrix,
Journal of Computational Information Systems,
Vol.9, No.19, 2013, pp.7583-7592.

[8] K. Hammond, Parallel functional
programming: An introduction, in:
International Symposium on Parallel Symbolic
Computation, Citeseer, 1994.

[9] R. Chen, Parallelized XML Query Based on
Functional Intermediate Language, Journal of
Chongqing University of Technology(Natural
Science), No.7, 2011, pp.81-86.

[10] C. Re, J. Brinkley, K. Hinshaw, D. Suciu,
Distributed xquery, in: Workshop on
Information Integration on the Web, Citeseer,
2004, pp. 116–121.

[11] M. Fernández, T. Jim, K. Morton, N. Onose, J.
Simeon, DXQ: A distributed XQuery scripting
language, in: Proceedings of the 4th
international workshop on XQuery
implementation, experience and perspectives,
ACM, 2007, pp. 1-6.

[12] S. Khatchadourian, M.P. Consens, J. Siméon,
Having a ChuQL at XML on the Cloud, in: A.
Mendelzon Int’l. Workshop, 2011.

[13] X. Li, Efficient and parallel evaluation of
XQuery, The Ohio State University, 2006.

[14] H. Miao, T. Nie, D. Yue, T. Zhang, J. Liu,
Algebra for Parallel XQuery Processing, in:
Web-Age Information Management, 2012, pp.
1-10.

[15] W. Lu, K. Chiu, Y. Pan, A parallel approach to
xml parsing, in: 7th IEEE/ACM International
Conference on Grid Computing, IEEE, 2007,
pp. 223-230.

[16] R. Bordawekar, L. Lim, A. Kementsietsidis,
B.W.L. Kok, Statistics-based parallelization of
XPath queries in shared memory systems, in:
Proceedings of the 13th International
Conference on Extending Database Technology
(EDBT), ACM, 2010, pp. 159-170.

[17] R. Chen, W. Chen, A parallel solution to XML
query application, in: 2010 3rd IEEE
International Conference on Computer Science
and Information Technology (ICCSIT), IEEE,
2010, pp. 542-546.

[18] X. Zhang, H. Liao, A framework for XQuery
system with XML algebra and tree pattern
query, Journal of Frontiers of Computer
Science and Technology, Vol.4, No.11, 2010,
pp.996-1004.

[19] D. Draper, P. Fankhauser, M.F. Fernández, A.
Malhotra, K. Rose, M. Rys, J. Siméon, P.

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 728 Volume 14, 2015

Wadler, XQuery 1.0 and XPath 2.0 formal
semantics, in: http://www.w3.org/TR/xquery-
semantics, 2007.

[20] M. Fernández, A. Malhotra, J. Marsh, M.
Nagy, N. Walsh, XQuery 1.0 and XPath 2.0
data model, in: http://www.w3.org/TR/xpath-
datamodel, 2007.

[21] A. Schmidt, F. Waas, M. Kersten, M.J. Carey,
I. Manolescu, R. Busse, XMark: A benchmark
for XML data management, in: Proceedings of
the 28th international conference on Very
Large Data Bases, VLDB Endowment, 2002,
pp. 974-985.

[22] M. Brantner, C.C. Kanne, G. Moerkotte, Let a
single FLWOR bloom, Lecture Notes in
Computer Science, 2007, pp.46-61.

[23] W.W.W. Consortium, XML Query Use Cases,
W3C Working Group Note, 2007.

WSEAS TRANSACTIONS on COMPUTERS Rongxin Chen, Zongyue Wang, Husheng Liao

E-ISSN: 2224-2872 729 Volume 14, 2015

